Search results

1 – 2 of 2
Article
Publication date: 24 December 2020

Hongya Niu, Zhaoce Liu, Wei Hu, Wenjing Cheng, Mengren Li, Fanli Xue, Zhenxiao Wu, Jinxi Wang and Jingsen Fan

Severe airborne particulate pollution frequently occurs over the North China Plain (NCP) region in recent years. To better understand the characteristics of carbonaceous…

Abstract

Purpose

Severe airborne particulate pollution frequently occurs over the North China Plain (NCP) region in recent years. To better understand the characteristics of carbonaceous components in particulate matter (PM) over the NCP region.

Design/methodology/approach

PM samples were collected at a typical area affected by industrial emissions in Handan, in January 2016. The concentrations of organic carbon (OC) and elemental carbon (EC) in PM of different size ranges (i.e. PM2.5, PM10 and TSP) were measured. The concentrations of secondary organic carbon (SOC) were estimated by the EC tracer method.

Findings

The results show that the concentration of OC ranged from 14.9 μg m−3 to 108.4 μg m−3, and that of EC ranged from 4.0 μg m−3 to 19.4μg m−3, when PM2.5 changed from 58.0μg m−3 to 251.1μg m−3 during haze days, and the carbonaceous aerosols most distributed in PM2.5 rather than large fraction. The concentrations of OC and EC PM2.5 correlated better (r = 0.7) than in PM2.5−10 and PM>10, implying that primary emissions were dominant sources of OC and EC in PM2.5. The mean ratios of OC/EC in PM2.5, PM2.5–10 and PM>10 were 4.4 ± 2.1, 3.6 ± 0.9 and 1.9 ± 0.7, respectively. Based on estimation, SOC accounted for 16.3%, 22.0% and 9.1% in PM2.5, PM2.5–10 and PM>10 respectively.

Originality/value

The ratio of SOC/OC (48.2%) in PM2.5 was higher in Handan than those (28%–32%) in other megacities, e.g. Beijing, Tianjin and Shijiazhuang in the NCP, suggesting that the formation of SOC contributed significantly to OC. The mean mass absorption efficiencies of EC (MACEC) in PM10 and TSP were 3.4 m2 g−1 (1.9–6.6 m2 g−1) and 2.9 m2 g−1 (1.6–5.6 m2 g−1), respectively, both of which had similar variation patterns to those of OC/EC and SOC/OC.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 June 2021

Hongya Niu, Zhenxiao Wu, Fanli Xue, Zhaoce Liu, Wei Hu, Jinxi Wang, Jingsen Fan and Yanqi Lu

This study aims to acquire a better understanding on the characteristics and risks of heavy metals (HMs) in PM2.5 from an industrial city – Handan, China.

Abstract

Purpose

This study aims to acquire a better understanding on the characteristics and risks of heavy metals (HMs) in PM2.5 from an industrial city – Handan, China.

Design/methodology/approach

PM2.5 samples were collected on the basis of daytime and nighttime at the state controlling air sampling site in Handan city. Ten metal elements (V, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Cd and Ba) in PM2.5 were determined with an inductively coupled plasma mass spectrometry. The pollution levels of metals were characterized by enrichment factors, and the sources of metals were identified with principle component analysis and cluster analysis. The ecological and health risks of metals were assessed using ecological and health risk indexes.

Findings

Results showed that the highest and lowest PM2.5 concentration appeared in winter and summer, respectively. The concentration of PM2.5 at night was higher than in the daytime in winter, yet it is the opposite in other seasons. The total mass concentration of detected metals was the highest in winter, and the total mass concentration in the daytime was higher than at night in all four seasons. The elements V, Rb, Sr and Ba exhibited a deficient contamination level; Cr, Ni and Cu exhibited a moderate contamination level; while Fe and Cd were at an extreme contamination level. The metals in PM2.5 originated from a mixture source of fossil fuel combustion and manufacture and use of metallic substances (34.04%), natural source (26.01%) and construction and traffic-related road dust (17.58%). Results from the ecological risk model showed that the ecological risk of metals was very high, especially risks related to Cd. Health risk model presented that both the non-carcinogenic and carcinogenic risk coefficients of metals were above the tolerance level of the human body.

Originality/value

The significance of the study is to further know the pollution characteristics of PM2.5 and related HMs in Handan city, and to provide references for ensuring local resident health and ecological environment.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2